育龙网
育龙MBA网手机版手机版 咨询热线:
您现在的位置:首页 > MBA > MBA数学 > MBA数学辅导

mba数学辅导概率练习题(1)

育龙MBA网    mba.china-b.com    发布时间:2011年04月19日    来源:互联网

 

mba数学辅导概率练习题(1)

 

问题求解
  1、有5名同学争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的可能情况的种数是()
  (A)种
  (B)种
  (C)124种
  (D)130种
  (E)以上结论均不正确
  【解题思路】这是一个允许有重复元素的排列问题,分三步完成:
  第一步,获得第1项冠军,有5种可能情况;
  第二步,获得第2项冠军,有5种可能情况;
  第三步,获得第3项冠军,有5种可能情况;
  由乘法原理,获得冠军的可能情况的种数是:
  【参考答案】(B)
  2、有6本不同的书,借给8名同学,每人至多1本,且无多余的书,则不同的供书法共有()
  (A)种
  (B)种
  (C)种
  (D)种
  (E)无法计算
  【解题思路】把8名同学看作8个不同元素,把6本不同的书看作6个位置,故所求方法为种。
  【参考答案】(B)
  3、从这20个自然数中任取3个不同的数,使它们成等差数列,这样的等差数列共有()
  (A)90个
  (B)120个
  (C)200个
  (D)180个
  (E)190个
  【解题思路】分类完成
  以1为公差的由小到大排列的等差数列有18个;以2为公差的由小到大的等差数列有16个;以3为公差的由小到大的等差数列有14个;…;以

9为公差的由小到大的等差数列有2个。
  组成的等差数列总数为(个)
  【参考答案】(D)
  4、有4名候选人中,评选出1名三好学生,1名优秀干部,1名先进团员,若允许1人同时得几个称号,则不同的评选方案共有()
  (A)种
  (B)种
  (C)种
  (D)种
  (E)以上结论均不正确
  【解题思路】把1名三好生,1名优秀干部,1名先进团员看作3个位置,把4名候选人看作4个元素。因为每个位置上都有4种选择方法,所以

符合题意的评选方案共有
  (种)
  【参考答案】(B)
  5、有甲、乙、丙三项任务,甲需2人承担,乙和丙各需1人承担。现从10人中选派4人承担这3项任务,不同的选派方法共有()
  (A)1260种
  (B)2025种
  (C)2520种
  (D)5040种
  (E)6040种
  【解题思路】分步完成:
  第1步选派2人承担甲任务,有种方法;
  第2步选派2人分别承担乙,丙任务,有种方法;
  由乘法原理,不同的选派方法共有:(种)
  【参考答案】(C)

发布者:admin4

来源:育龙MBA网本页网址:http://mba.china-b.com/whlg/zswd/572.html

  声明:我方为第三方信息服务平台提供者,本文来自于网络,登载出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。如若我方内容涉嫌侵犯其合法权益,应该及时反馈,我方将会尽快移除被控侵权内容。

育龙MBA网 2003-2022 沪公网安备31011702000011号
沪ICP备13002341号