2010年联考mba数学真题练习辅导
1、某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法共有多少种?(462)
【思路1】剩下的5个分配到5个班级.c(5,7)
剩下的5个分配到4个班级.c(1,7)*c(3,6)
剩下的5个分配到3个班级.c(1,7)*c(2,6)c(2,7)*c(1,5)
剩下的5个分配到2个班级.c(1,7)*c(1,6)c(1,7)*c(1,6)
剩下的5个分配到1个班级.c(1,7)
所以c(5,7)c(1,7)*c(3,6)c(1,7)*c(2,6)c(2,7)*c(1,5)c(1,7)*c(1,6)c(1,7)*c(1,6)c(1,7)=462
【思路2】C(6,11)=462
2、在10个信箱中已有5个有信,甲、乙、丙三人各拿一封信,依次随便投入一信箱。求:
(1)甲、乙两人都投入空信箱的概率。
(2)丙投入空信箱的概率。
【思路】(1)A=甲投入空信箱,B=乙投入空信箱,
P(AB)=C(1,5)*C(1,4)/(10*10)=1/5
(2)C=丙投入空信箱,
P(C)=P(C*AB)P(C*B)P(C*A)P(C*)
=(5*4*35*5*45*6*45*5*5)/1000=0.385
3、设A是3阶矩阵,b1=(1,2,2)的转置阵,b2=(2,-2,1)的转置阵,b3=(-2,-1,2)的转置阵,满足Ab1=b1,Ab2=2b2,Ab3=3b3,求A.
【思路】可化简为A(b1,b2,b3)=(b1,b2,b3)
求得A=
4、已知P(A)=X,P(B)=2X,P(C)=3X且P(AB)=P(BC),求X的最大值.
【思路】P(BC)=P(AB)=P(A)=X
P(BC)=P(AB)小于等于P(A)=X
P(BC)=P(B)P(C)-P(BC)大于等于4X
又因为P(BC)小于等于1
4X小于等于1,X小于等于1/4
所以X最大为1/4
5、在1至2000中随机取一个整数,求
(1)取到的整数不能被6和8整除的概率
(2)取到的整数不能被6或8整除的概率
【思路】设A=被6整除,B=被8整除;
P(B)=[2000/8]/2000=1/8=0.125;
P(A)=[2000/6]/2000=333/2000=0.1665;[2000/x]代表2000/x的整数部分;
(1)求1-P(AB);AB为A、B的最小公倍数;
P(AB)=[2000/24]/2000=83/2000=0.0415;答案为1-0.0415=0.9585
(2)求1-P(AB)(AB)=P(A)P(B)-P(AB)=0.25;答案为1-0.25=0.75。
相关链接
发布者:shuqin
来源:育龙MBA网本页网址:http://mba.china-b.com/whlg/ksst/8740.html声明:我方为第三方信息服务平台提供者,本文来自于网络,登载出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。如若我方内容涉嫌侵犯其合法权益,应该及时反馈,我方将会尽快移除被控侵权内容。